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With the help of the symbolic computation system Maple and an expanded projective Riccati
equation approach, we obtain some new rational explicit solutions with three arbitrary functions
for the (2+1)-dimensional Boiti-Leon-Pempinelli system, including Weierstrass function solutions,
solitary wave solutions and trigonometric function solutions. From these, several y-periodic soliton
localized excitations are constructed and some evolution properties of these novel y-periodic localized
structures are discussed.
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1. Introduction

The soliton theory supplies good applications in
various fields of natural science, such as in plasmas
physics, hydrodynamics, nonlinear optics, fiber optics,
solid state physics [1], and the soliton interaction plays
an important role in the soliton theory. Therefore, it is
of interest to study the interactive properties of soli-
tons. From a symmetry study, we know that there
exist more abundant symmetry structures with arbi-
trary functions for (2+1)-dimensional integrable mod-
els [2, 3] than there are in (1+1)-dimensions. There-
fore the soliton structure and the interaction between
solitons or soliton structures of (2+1)-dimensional
nonlinear models may be more complex and show
quite rich phenomena that have not yet been re-
vealed. Much work has been done in this respect,
and a lot of exciting findings and much progress
have been reported recently [4 – 6]. Because the find-
ing of physically relevant soliton solutions in (2+1)-
dimensions is much more difficult than that in (1+1)-
dimensions, the study of the interaction between soli-
tons in (2+1)-dimensions is very difficult. In this
paper, we consider the following celebrated (2+1)-
dimensional Boiti-Leon-Pempinelli (BLP) system [7]:

uty = (u2 −ux)xy + 2vxxx, vt = vxx + 2uvx, (1)

which is related to the sine-Gordon equation or the
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sinh-Gordon equation by certain transformation [7].
Abundant soliton-like, multi-soliton-like and periodic
solutions were obtained by using a further extended
tanh method [8]. Abundant propagating localized ex-
citations were also derived by Zheng et al. [9] with
the help of the Painlevé-Bäcklund transformation and a
multi-linear variable separated approach. Here, we dis-
cuss its new variable separated excitations with three
arbitrary functions via an expanded projective Riccati
equation approach, and explore the interaction proper-
ties between two y-periodic solitons from the derived
solutions.

2. New Variable Separated Solutions for the
(2+1)-Dimensional BLP System

We apply the expanded projective Riccati equation
approach to study (1). We suppose that (1) has formal
solutions as follows:

u(x,y, t) =
n

∑
i=0

ai f i(ξ )+
n

∑
i=1

bi f i−1(ξ )g(ξ ),

v(x,y, t) =
N

∑
j=0

A j f j(ξ )+
N

∑
j=1

B j f j−1(ξ )g(ξ ),
(2)

where ai = ai(x,y, t), bi = bi(x,y, t), A j = A j(x,y, t),
B j = B j(x,y, t), with i = 0,1, · · · ,n; j = 0,1, · · · ,N and
ξ = ξ (x,y, t) are arbitrary functions to be determined
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later. n and N are two positive integers that will be
determined soon. f (ξ ) and g(ξ ) satisfy the projective
Riccati equation [10]

f ′(ξ ) = p f (ξ )g(ξ ), g′(ξ ) = R + pg2(ξ )− r f (ξ ),

with

g2(ξ ) = − 1
p

(
R−2r f (ξ )+

r2 + µ
R

f 2(ξ )
)

, (3)

where the prime denotes derivative with respect to ξ ,

p =±1, R ( �= 0) and r are two constants. Equations (3)
admit the following special solutions [11]:

Case 1. If µ = −r2, (3) has the Weierstrass elliptic
function solution

f1(ξ ) =
R
6r

+
2
pr

℘(ξ ), g1(ξ ) =
12℘′(ξ )

R + 12p℘(ξ )
, (4)

where p = ±1. The Weierstrass elliptic function
℘(ξ ) = ℘(ξ ;g2,g3) satisfies ℘′2(ξ ) = 4℘3(ξ ) −
g2℘(ξ )−g3, and g2 = R2

12 , g3 = pR3

216 .

Case 2. If µ = h2 − s2 and pR < 0, we have the solitary wave solution

f2(ξ )=
R

r + scosh(
√−pRξ )+ hsinh(

√−pRξ )
, g2(ξ )=−

√−pR
p

ssinh(
√−pRξ )+ hcosh(

√−pRξ )
r + scosh(

√−pRξ )+ hsinh(
√−pRξ )

, (5)

where p = ±1, h and s are arbitrary constants.
Case 3. If µ = −h2 − s2 and pR > 0, (3) has the trigonometric function solution

f3(ξ ) =
R

r + scos(
√

pRξ )+ hsin(
√

pRξ )
, g3(ξ ) =

√
pR
p

ssin(
√

pRξ )−hcos(
√

pRξ )
r + scos(

√
pRξ )+ hsin(

√
pRξ )

, (6)

where p = ±1, h and s are arbitrary constants.
By balancing the highest-order derivative term with

the nonlinear terms of (1), we obtain n = N = 1. There-
fore, ansatz (2) becomes

u = a+b f (ξ )+cg(ξ ), v = A+B f (ξ )+Cg(ξ ), (7)

where a, b, c, A, B, C and ξ are undetermined functions
of (x,y, t). f (ξ ) and g(ξ ) satisfy (3).

With the aid of Maple, substituting (7) along
with (3) into (1), collecting all terms with the same
power in f i(ξ )g j(ξ ) (i = 0,1,2,3,4; j = 0,1), and set-
ting the coefficients of these terms f i(ξ )g j(ξ ) (i =
0,1,2,3,4; j = 0,1) to zero, we acquire a set of par-
tial differential equations with respect to the unknowns
a, b, c, A, B, C and ξ . It is difficult to obtain the
general solution of these partial differential equations
based on the solutions of (3). Fortunately, in the case
of A = θ (y), ξ = χ(x,t)+ ψ(y), where θ ≡ θ (y) is an
arbitrary function, χ ≡ χ(x,t) and ψ ≡ ψ(y) are two
arbitrary variable separated functions of (x,t) and y,
respectively, we can get the following results:

Case 1. For µ = −r2 :

a =
ξt − ξxx

2ξx
, b = 0, c = −1

2
pξx, A = θ (y),

B = 0, C = −1
2

pξy, ξ = χ(x,t)+ ψ(y).
(8)

Case 2. For µ = h2 − s2 :

a =
ξt − ξxx

2ξx
, b = 0, c = −pξx, A = θ (y),

B = 0, C = −pξy, r = 0, ξ = χ(x, t)+ ψ(y);

(9)

and

a =
ξt − ξxx

2ξx
, b = ±1

2

√
p(s2 − r2 −h2)

R
ξx,

c = −1
2

pξx, A = θ (y), B = ±1
2

√
p(s2 − r2 −h2)

R
ξy,

C = −1
2

pξy, r = r, ξ = χ(x, t)+ ψ(y). (10)

Case 3. For µ = −h2 − s2 :

a =
ξt − ξxx

2ξx
, b = 0, c = −pξx, A = θ (y),

B = 0, C = −pξy, r = 0, ξ = χ(x, t)+ ψ(y);

(11)
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and

a =
ξt − ξxx

2ξx
, b = ±1

2

√
p(s2 − r2 + h2)

R
ξx,

c = −1
2

pξx, A = θ (y), B = ±1
2

√
p(s2 − r2 + h2)

R
ξy,

C = −1
2

pξy, r = r, ξ = χ(x,t)+ ψ(y), (12)

where θ ≡ θ (y) is an arbitrary function, χ ≡ χ(x, t)
and ψ ≡ ψ(y) are two arbitrary variable separated
functions of (x, t) and y, respectively.

From (4) – (6) and (8) – (12), we obtain the follow-
ing solutions for (1):

Family 1. For µ = −r2, we obtain the Weierstrass
elliptic function solution

u1 =
χt − χxx

2χx
−6pχx

℘′(ξ )
R + 12p℘(ξ )

, v1 = θ −6pψy
℘′(ξ )

R + 12p℘(ξ )
, (13)

where ξ = χ(x,t)+ψ(y), χ(x,t), ψ(y) and θ (y) are arbitrary functions of (x, t) and y, respectively, p =±1, R is
an arbitrary constant.

As we know, there is a relation ℘(ξ ;g2,g3) = e2 − (e2 − e3)cn2(
√

e1 − e3ξ ;m) between the Weierstrass solu-
tion of℘′2(ξ ) = 4℘3(ξ )−g2℘(ξ )−g3 and the second kind of the Jacobi elliptic function cn, where m2 = e2−e3

e1−e3

is the modulus of Jacobi elliptic functions, ei (i = 1,2,3; e1 ≥ e2 ≥ e3) are roots of 4z3 −g2z−g3 = 0 [11]. So,
the Weierstrass elliptic function solutions u1 and v1 can also be written in the form of a Jacobi elliptic function:

u1′ =
χt − χxx

2χx
−12pχx

(e2 − e3)
√

e1 − e3sn(
√

e1 − e3ξ )cn(
√

e1 − e3ξ )dn(
√

e1 − e3ξ )
R + 12p(e2− (e2 − e3)cn2(

√
e1 − e3ξ ))

,

v1′ = θ −12pψy
(e2 − e3)

√
e1 − e3sn(

√
e1 − e3ξ )cn(

√
e1 − e3ξ )dn(

√
e1 − e3ξ )

R + 12p(e2− (e2 − e3)cn2(
√

e1 − e3ξ ))
.

(14)

If m → 1, i. e. e2 → e1, we have snξ → tanhξ , cnξ → sechξ , dnξ → sechξ , and (14) degenerates into a solitary
wave solution:

u1′′ =
χt − χxx

2χx
−12pχx

(e1 − e3)
3
2 tanh(

√
e1 − e3ξ )sech2(

√
e1 − e3ξ )

R + 12p(e1− (e1 − e3)sech2(
√

e1 − e3ξ ))
,

v1′′ = θ −12pψy
(e1 − e3)

3
2 tanh(

√
e1 − e3ξ )sech2(

√
e1 − e3ξ )

R + 12p(e1− (e1 − e3)sech2(
√

e1 − e3ξ ))
.

(15)

Family 2. For µ = h2 − s2 and pR < 0, we have solitary wave solutions:

u2 =
χt − χxx

2χx
+ p

√
−pRχx

ssinh(
√−pRξ )+ hcosh(

√−pRξ )
scosh(

√−pRξ )+ hsinh(
√−pRξ )

,

v2 = θ + p
√−pRψy

ssinh(
√−pRp)+ hcosh(

√−pRξ )
scosh(

√−pRξ )+ hsinh(
√−pRξ )

,

(16)

where ξ = χ(x,t)+ ψ(y), χ(x,t), ψ(y) and θ (y) are arbitrary functions of (x, t) and y, respectively, R, h and s
are arbitrary constants, p = ±1 and h2 + s2 �= 0; and

u3 =
χt − χxx

2χx
± 1

2
R

√
p(s2 − r2 −h2)

R
χx

r + scosh(
√−pRξ )+ hsinh(

√−pRξ )

+
1
2

p
√
−pRχx

ssinh(
√−pRξ )+ hcosh(

√−pRξ )
r + scosh(

√−pRξ )+ hsinh(
√−pRξ )

,
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v3 = θ ± 1
2

R

√
p(s2 − r2 −h2)

R
ψy

r + scosh(
√−pRξ )+ hsinh(

√−pRξ )

+
1
2

p
√−pRψy

ssinh(
√−pRξ )+ hcosh(

√−pRξ )
r + scosh(

√−pRξ )+ hsinh(
√−pRξ )

, (17)

where ξ = χ(x,t)+ψ(y), χ(x,t), ψ(y) and θ (y) are arbitrary functions of (x, t) and y, respectively, R, h, s and r
are arbitrary constants, p = ±1 and h2 + r2 ≥ s2.

Family 3. For µ = −h2 − s2 and pR > 0, we obtain the following trigonometric function solutions:

u4 =
χt − χxx

2χx
− p

√
pRχx

ssin(
√

pRξ )−hcos(
√

pRξ )
scos(

√
pRξ )+ hsin(

√
pRξ )

, v4 = θ − p
√

pRψy
ssin(

√
pRξ )−hcos(

√
pRξ )

scos(
√

pRξ )+ hsin(
√

pRξ )
, (18)

where ξ = χ(x,t)+ ψ(y), χ(x,t), ψ(y) and θ (y) are arbitrary functions of (x, t) and y, respectively, R, h and s
are arbitrary constants, p = ±1 and h2 + s2 �= 0; and

u5 =
χt − χxx

2χx
± 1

2
R

√
p(s2 − r2 + h2)

R
χx

r + scos(
√

pRξ )+ hsin(
√

pRξ )

− 1
2

p
√

pRχx
ssin(

√
pRξ )−hcos(

√
pRξ )

r + scos(
√

pRξ )+ hsin(
√

pRξ )
,

v5 = θ ± 1
2

R

√
p(s2 − r2 + h2)

R
ψy

r + scos(
√

pRξ )+ hsin(
√

pRξ )
− 1

2
p
√

pRψy
ssin(

√
pRξ )−hcos(

√
pRξ )

r + scos(
√

pRξ )+ hsin(
√

pRξ )
,

(19)

where ξ = χ(x,t)+ψ(y), χ(x,t), ψ(y) and θ (y) are arbitrary functions of (x, t) and y, respectively, R, h, s and r
are arbitrary constants, p = ±1 and h2 + s2 ≥ r2.

Because of the arbitrariness of the functions χ(x, t), ψ(y) and θ (y) included in the above cases, the phys-
ical quantities u and v may possess quite different structures. For example, if χ(x, t) = kx + ct, ψ(y) = ly
and θ (y) = λ y, all solutions of the above cases become simple traveling wave excitations. Moreover, based
on the derived solutions, we may obtain abundant stationary localized solutions, which are not traveling wave
excitations or not propagating waves, just as Wu et al. reported about the non-propagating solitons in 1984 [12].
For example, if the arbitrary functions are chosen appropriately, we may derive many kinds of nonpropagating
localized solutions like dromion solutions, ring solutions, peakon, compacton solutions [13]. Similarly, several
novel typical y-periodic excitations for the physical quantities u and v can also be constructed. We will make a
brief discussion about their interaction behavior for the (2+1)-dimensional BLP system in the following.

3. Interaction Behavior between Two y-Periodic Soliton Localized Structures

In order to construct several kinds of interesting localized y-periodic solitons for the (2+1)-dimensional BLP
system, we take the potential function U ≡ uy, where u is expressed by (17). For simplicity, we take p = −1,
R = 5, h = 1, s = 2, r = 3, and one of (17) becomes

U ≡ uy =
5(3 +(6−√

6)cosh(
√

5(χ + ψ))+ (3−2
√

6)sinh(
√

5(χ + ψ)))
2(3 + 2cosh(

√
5(χ + ψ))+ sinh(

√
5(χ + ψ)))2

χxψy. (20)

If the functions χ(x + t) and ψ(y) are simply chosen as

χ(x + t) = sech2(x− t)+ sech(x + 0.5t), ψ(y) = siny, (21)
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Fig. 1. A plot of the elastic evolution of two rows of
y-periodic solitons for the function U expressed by (20) with
conditions (21) at different times: (a) t = −18; (b) t = −9;
(c) t = 0; (d) t = 9; (e) t = 18.

we obtain two rows of localized y-periodic solution
structures (Fig. 1). From Fig. 1 we conclude that the in-
teraction between the special y-periodic soliton struc-
tures is fully elastic (that is, the amplitude, velocity and
wave shape of two rows of solitons do not change af-
ter their interaction), which is very similar to the com-
pletely elastic collision between two classical parti-
cles. To show this more carefully, one can find that the
position located by the large static localized structure
moves from about x = −18 to x = 18, but its ampli-
tude, velocity and shape are completely preserved after
interaction.

Along with the above idea, however, we find that the
interaction between two rows of y-periodic localized
structures may exhibit another property, namely that

their shapes are not completely preserved after inter-
action. In order to clarify this nonelastic phenomenon
more clearly and visually, two simple examples are de-
picted in Figs. 2 and 3. Here we take

χ(x + t) = sech(x− t)2 + 0.5tanh(x + t),
ψ(y) = siny,

(22)

and

χ(x + t) = sech(x− t)+ 1.8tanh(x + t),
ψ(y) = siny.

(23)

From Fig. 2, we can see that the interaction between
two rows of y-periodic localized structures is nonelas-
tic as their amplitudes are changed. In Fig. 3 another
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Fig. 2. A plot of the nonelastic evolution of two rows of
y-periodic solitons for the function U expressed by (20) with
conditions (22) at different times: (a) t = −7; (b) t = 0;
(c) t = 7.
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Fig. 3. A plot of the evolution of two rows of y-periodic soli-
tons combined into one for the function U expressed by (20)
with conditions (23) at different times: (a) t = −6; (b) t = 0;
(c) t = 6.

nonelastic type of y-periodic localized excitations is
shown. From Fig. 3, we can see that the two rows of
y-periodic solitons are combined into one with increas-

ing time. This phenomenon indicates that their interac-
tion is nonelastic, even a merger of the two rows may
happen, which we call completely nonelastic.
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4. Summary and Discussion

In summary, with the aid of the symbolic compu-
tation system Maple, we obtain some rational explicit
solutions of the (2+1)-dimensional BLP system by us-
ing the expanded projective Riccati equation method.
These solutions include Weierstrass function solutions,
solitary wave solutions and trigonometric function so-
lutions. Based on the derived variable separated so-
lutions with three arbitrary functions [χ(x + t), ψ(y),
θ (y)], many kinds of localized coherent soliton struc-
tures such as multi-dromion, multi-ring, multi-lump
solutions, breathers, instantons, peakons, chaotic and
fractal soliton solutions can be constructed by choos-
ing the arbitrary functions appropriately. The evolu-
tion properties among some y-periodic local structures
for the (2+1)-dimensional BLP system are discussed
and the results show novel properties and interest-
ing behaviors: the interactions between two rows of

y-periodic solitons can be elastic and nonelastic, some-
times even merge. To our knowledge, the interaction
properties of the y-periodic localized coherent struc-
tures in various types for the (2+1)-dimensional BLP
system are first studied and reported here. Thanks to
the wide applications of the soliton interactions, to
learn more about both other different structures and
their interaction behaviors is more relevant. Whether
these structures exist or exhibit phenomena in the
higher-dimensional nonlinear models are worth study-
ing further.
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